Nonlinear analysis of gait kinematics to track changes in oxygen consumption in prolonged load carriage walking: a pilot study.
نویسندگان
چکیده
Linking human mechanical work to physiological work for the purpose of developing a model of physical fatigue is a complex problem that cannot be solved easily by conventional biomechanical analysis. The purpose of the study was to determine if two nonlinear analysis methods can address the fundamental issue of utilizing kinematic data to track oxygen consumption from a prolonged walking trial: we evaluated the effectiveness of dynamical systems and fractal analysis in this study. Further, we selected, oxygen consumption as a measure to represent the underlying physiological measure of fatigue. Three male US Army Soldier volunteers (means: 23.3 yr; 1.80 m; 77.3 kg) walked for 120 min at 1.34 m/s with a 40-kg load on a level treadmill. Gait kinematic data and oxygen consumption (VO(2)) data were collected over the 120-min period. For the fractal analysis, utilizing stride interval data, we calculated fractal dimension. For the dynamical systems analysis, kinematic angle time series were used to estimate phase space warping based features at uniform time intervals: smooth orthogonal decomposition (SOD) was used to extract slowly time-varying trends from these features. Estimated fractal dimensions showed no apparent trend or correlation with independently measured VO(2). While inter-individual difference did exist in the VO(2) data, dominant SOD time trends tracked and correlated with the VO(2) for all volunteers. Thus, dynamical systems analysis using gait kinematics may be suitable to develop a model to predict physiologic fatigue based on biomechanical work.
منابع مشابه
Biomechanics analysis of human walking with load carriage.
BACKGROUND Comprehensive analysis of the inherent laws and the biomechanic principles of human walking with load carriage and building kinematics, and kinematics model of human walking with load carriage, are very meaningful for the development of devices and apparatus that are related to human walking with load carriage, such as a lower limb exoskeleton. OBJECTIVE The gait experiment of huma...
متن کاملThe Effects of a Lower Body Exoskeleton Load Carriage Assistive Device on Oxygen Consumption and Kinematics during Walking with Loads
The purpose of this study was to investigate the metabolic cost of wearing a prototype exoskeleton (EXO) while walking with a range of heavy loads, and to analyze the associated gait biomechanics. Ten Army enlisted men participated in the study. Oxygen consumption (VO2) and gait biomechanics were measured while Soldiers walked at 4.83 km/h and 0% grade under three realistic load weight configur...
متن کاملEffect of different walking speed on the gait kinematics of individuals with knee varus
The purpose of current study was to investigate the spatio-temporal gait parameters and knee varus angle during walking at different speeds in young with knee varus. 18 subjects with varus deformity classified at grade 3 of bowleg and 17 healthy subjects, volunteered to participate in this study. The following variables include stance, swing, double support and cycle time, cadence, stride le...
متن کاملThe Comparison of Gait Kinematics in Over-Weight and Normal-Weight People across Age Groups
Objective Obesity and overweight have changed to very important factors in people movements in the modern world. Therefore, the present study was carried out to examine the effects of overweight on gait kinematic factors in children, young adults, middle-aged, and older adults. Methods The present study was a causal-comparative study in which 40 participants aged 9-85 were selected based on pu...
متن کاملStrength Training and Kinematics Parameters of Gait in Healthy Female Elderly
Objectives: This study was under taken to consider the effect of strength training on some kinematics parameters of gait (step length, cadence and speed walking). Methods & Materials: Twenty-four healthy elderly women (with average and standard deviation age of 61.53±2.84 years, height of 157.1±5.5 cm, weight of 69.13±7.6 kg and BMI 28.1±3.6 kg/m) participated in this study. The strength of ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of biomechanics
دوره 42 13 شماره
صفحات -
تاریخ انتشار 2009